Copyright ©2012 NPR. For personal, noncommercial use only. See Terms of Use. For other uses, prior permission required.

RENEE MONTAGNE, HOST:

This is MORNING EDITION from NPR News. I'm Renee Montagne.

LINDA WERTHEIMER, HOST:

And I'm Linda Wertheimer.

Before we get to the fireworks on the Fourth of July, we might see some pyrotechnics from a giant physics experiment near Geneva, Switzerland. Scientists there are planning to gather on the morning of the fourth to hear the latest about the decades-long search for a sub-atomic particle that could help explain why objects in our universe have weight.

The buzz is that they're closing in on the elusive Higgs Particle. As NPR's Richard Harris reports, that would be a major milestone in our quest to understand the basic nature of our universe.

RICHARD HARRIS, BYLINE: King Arthur had his quest for the Holy Grail. For physicists, the quest for the Higgs particle is pretty much the same thing. You might call it the final puzzle piece needed to complete our picture of how all the fundamental particles make up the universe. Joe Lykken at Fermilab in Illinois has been part of this quest since the early 1980s.

JOE LYKKEN: Our former director, Leon Lederman, called the Higgs boson the God Particle. And it was not meant to be a religious comment. It was meant to express our understanding of how the universe works. We think without a Higgs boson you can't have a universe in the first place.

HARRIS: Or at least the universe would be incredibly boring. That's because the Higgs particle, or Higgs boson, would explain why the atoms in the stars and in our bodies have mass. If they didn't have mass, we wouldn't exist as physical beings.

LYKKEN: We think the Higgs boson is a manifestation of the fact that the whole universe is filled with a kind of force that we haven't been able to detect yet that gives other particles mass.

HARRIS: It's weird to think that particles only become massive by interacting with some invisible field. After all we think of mass as an inherent property of an object. But that's what the so-called standard model of our universe predicts.

We may never be able to detect that mass field directly. But as you may recall from high school science, fields also come with matching particles. Electromagnetic fields, like light, are also manifest as abundant photon particles. So, why haven't we seen the Higgs particle? Lykken says that's because it's incredibly unstable.

LYKKEN: So it exists for a billionth of a billionth of a billionth of a second, or something like that, and then falls apart into other particles.

HARRIS: And that brings us, at last, to the physics experiment on the Swiss-French border. The Large Hadron Collider has been banging together atomic particles at super-high energies in an attempt to produce a few Higgs particles. And scientists have been sifting through the resulting debris to see if they can find signs that Higgs particles appeared and then quickly broke apart.

Last December, the scientists there said they were seeing tantalizing hints. Now, they have a whole new pile of data. They're hoping to be able to say something more definitive. Matt Strassler is a theorist at Rutgers University.

MATT STRASSLER: This is really the most exciting year in my career. And the reason it's so exciting is that this is one of those very, very rare circumstances where, first of all, we know there's something to look for, and we know that whatever the answer is, whether it is there or not, it's going to be very interesting and exciting.

HARRIS: Literally thousands of physicists are waiting for the aha moment, whenever that might be. Drew Baden at the University of Maryland says, on one level, the discovery is expected since it's been predicted for so long. But he says the physics world is like Christopher Columbus, who sailed off to the west, confident that he would eventually find the ocean's opposite shore.

DREW BADEN: It's all a theory, right? Because no one's done it. And then he goes and they get in their ships and, oh my god, they actually make it. This is really deep.

HARRIS: Columbus took an abstract and unproven idea and proved it was true. Baden says that's exactly where the experiments in Switzerland are heading - turning squiggly formulas into actual physical things. They can't quite plant a flag.

BADEN: But it really looks good. People are starting to be convinced that maybe this is the new world that we're seeing.

HARRIS: Finding the Higgs particle isn't like finding a speck of dirt. Nobody will ever see it directly. But the way things are going, sometime this year physicists will probably see enough evidence in that spray of sub-atomic particles that they will collectively declare victory.

Richard Harris, NPR News.

Copyright © 2012 NPR. All rights reserved. No quotes from the materials contained herein may be used in any media without attribution to NPR. This transcript is provided for personal, noncommercial use only, pursuant to our Terms of Use. Any other use requires NPR's prior permission. Visit our permissions page for further information.

NPR transcripts are created on a rush deadline by a contractor for NPR, and accuracy and availability may vary. This text may not be in its final form and may be updated or revised in the future. Please be aware that the authoritative record of NPR's programming is the audio.

Comments

 

Please keep your community civil. All comments must follow the NPR.org Community rules and terms of use, and will be moderated prior to posting. NPR reserves the right to use the comments we receive, in whole or in part, and to use the commenter's name and location, in any medium. See also the Terms of Use, Privacy Policy and Community FAQ.