MRSA: The Drug-Resistant 'Superbug' That Won't Die Superbug, a new book by journalist Maryn McKenna, tracks the spread of MRSA, the drug-resistant staph infection that seems to outwit every antibiotic thrown at it. McKenna explains how the bacteria has changed over the past 30 years — and how a vaccine may be the only way to stop it.

MRSA: The Drug-Resistant 'Superbug' That Won't Die

MRSA: The Drug-Resistant 'Superbug' That Won't Die

  • Download
  • <iframe src="" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript

Science journalist Maryn McKenna says that the best way to avoid MRSA is to maintain good hygiene. "Sometime as simple as washing our hands does seem to be effective," she says. "Washing your hand and asking your kid to shower after football is not a bad idea." hide caption

toggle caption

Science journalist Maryn McKenna says that the best way to avoid MRSA is to maintain good hygiene. "Sometime as simple as washing our hands does seem to be effective," she says. "Washing your hand and asking your kid to shower after football is not a bad idea."
Superbug: The Fatal Menace of MRSA: Cover Detail
Superbug: The Fatal Menace of MRSA
By Maryn McKenna
Hardcover, 288 pages
Free Press
List price: $26.00
Read an Excerpt

For several decades, a highly-sophisticated bacteria called MRSA has spread rapidly through hospitals, communities and schools. MRSA, which stands for methicillin resistant Staphylococcus aureus, is a type of staph infection — the kind that can't be treated with first-line antibiotics.

Staph infections are the number one cause of both skin infections and infections in hospitals. Though most can be treated by antibiotics, the number of cases of MRSA is growing. By 1996, writes Maryn McKenna "almost every large hospital in the United States had detected at least one MRSA infection, and a third of all the staph infections that occurred during hospital stays were caused by MRSA instead of common drug-sensitive staph."

McKenna is the author of Superbug: The Fatal Menace of MRSA. In an interview with Fresh Air, she explains that from the 1960s, when doctors first started seeing patients with MRSA, until the 1990s, that "it was always thought that the only place where [MRSA] was successful in attacking people was in hospitals because [patients] are debilitated and ill."

But in the 1990s, doctors at the University of Chicago Medical Center began to notice young patients coming into the emergency room with MRSA. The young people had particularly severe cases — and unlike most patients diagnosed with drug-resistant staph infections, these patients had not contracted the pathogen inside a hospital setting.

"It turned out that there was a slightly different strain of staph that had adapted itself to live in the community and cause infections that are serious — and sometimes more serious — than the ones that were being caused in hospitals," says McKenna.

The second strain of MRSA was initially resistant to fewer drugs than the hospital strain — but acquired resistance to antibiotic treatment quickly. And now, the hospital MRSA strain and the community MRSA strain have merged to form a third kind of MRSA which, McKenna says, is even more dangerous.

"What [researchers] started to notice is that people were hospital patients and yet, were infected with the community strain — which meant that it behaved slightly differently, caused slightly different syndromes, and also was resistant to different drugs," says McKenna. "This makes it much harder to say when someone is infected with a MRSA infection, exactly which drugs are going to work. So you have to use the most intense drugs immediately until you can figure our which of the less-important drugs might work for the hospital or the community strain."

Preventing Staph Infections

Experts recommend practicing good hygiene. That includes:

  • Washing your hands thoroughly with soap and water or using an alcohol-based hand sanitizer.
  • Cleaning and covering cuts and scrapes until they are healed.
  • Avoiding contact with other people's wounds and bandages.
  • Avoiding sharing personal items such as toothbrushes, razors and towels.

Because MRSA spreads through skin-to-skin contact, McKenna says that infections often spread in places where crowding and sanitation are concerns, like in prisons or army barracks.

"It [also] explains why [MRSA infections] tend to happen a lot in athletes and kids who play school sports. When a child crashes into another child in a football tackle — and one child has their on their skin, and the other child gets scraped — then the bacteria can enter their skin there," she says.

McKenna notes parents shouldn't worry about letting their kids play sports, but notes that it's important to make sure children are clean.

"There are things that kids do — such as not bringing their uniforms home to get washed very often or letting their shoulder pads get dirty — and then there are things that schools do as well," she says. "It was really astonishing to me to learn that kids no longer shower after gym class. ... They don't do that anymore. So if they've picked up a bacterium as they're out on the football field, it's going to be on their skin much longer."

Maryn McKenna's other work includes Beating Back the Devil: On the Front Lines with the Disease Detectives of the Epidemic Intelligence Service. Scott Streble hide caption

toggle caption
Scott Streble

Maryn McKenna's other work includes Beating Back the Devil: On the Front Lines with the Disease Detectives of the Epidemic Intelligence Service.

Scott Streble

Though MRSA is easily transmittable, McKenna says following simple hygienic steps can help prevent the pathogen from spreading.

"You can control washing your hands a lot," she says. "You can control if you live in a city with a subway — where lots of people are holding onto the subway rail — you can control having a bottle of something uncomplicated like Purell in your purse or in your pocket. You can control when you go to the doctor or take your kid to the doctor, when you're using drugs in an appropriate way. To go around in our lives feeling like there's this cloud or threat all the time puts us in the position where we tend to over-respond, and when we tend to over-respond, we use too many bacterial products. We use antibiotics inappropriately. And then without realizing it, we make worse the situation we've already gotten ourselves into with this epidemic of drug-resistant bacteria."

Interview Highlights

On how it's being spread beyond hospitals, into the community:

"MRSA lives not just in people who are debilitated and ill and who are in hospitals but in all of us walking around all the time. But it was always thought — from about the 1960s when it first sparked up to the 1990s — that the only place where it was successful in attacking people was in hospitals because [patients] are debilitated and ill. And then in the 1990s, a group of researchers at the University of Chicago noticed that they were seeing infections in children that looked very like those hospital infections and yet these kids had never been anywhere near a hospital. And it turned out that there was a slightly different strain of staph that had adapted itself to live in the community and cause infections that are serious — and sometimes more serious — than the ones that were being caused in hospitals."

On what MRSA can do the human body:

"The interesting thing about MRSA is that is does an extraordinary number of things that it's taken a number of years for people to figure out. So, MRSA is an acronym: M-R-S-A. And the S-A stands for Staphylococcus aureus, which is a very large grouping of bacteria which have been with mankind for probably as long as we've been human and you can tell that because there's a lot of tricks it has for getting around our immune system. It lives with us — on our skin, in our nostrils, often without causing very much difficulty until it can get inside our bodies through a scrape or a cut in the skin or an incision made for, say a catheter. Then, it can cause infestations of the valves of the heart. It can infect the inside of bones. It can cause very large abscesses — collections of pus inside muscles. More recently, it's been discovered that it doesn't actually need a cut or a break in the skin in order to cause disease. It can also start an infection on what looks like intact skin and cause what medicine calls 'a skin and soft tissue infection' which sounds like not a big deal but can turn into a very large infection that requires surgery to get better."

On why people in hospitals are more likely to be infected with the bacteria:

"People who are in hospitals are really good targets for infections. If you were a bacterium, you'd probably really like to live in [sick people] because their immune systems are damped down in a number of ways. They might be elderly. They might be taking chemotherapy — either for HIV or for cancer. They might have had a lot of other antibiotics already that damped down the immune system. They might have a lot of cuts on their skin because of lines and IVs going in and out. So they present both a lot of portals for which bacteria can enter and also reduced defenses in the body once the bacteria get in."

On why it's difficult to get rid of drug-resistant staph infections inside hospitals:

"There are lots of sick people and there are lots of really busy health care workers who, because medicine is so complicated, so technological, and ... so very, very busy, have a lot of things to do. So there are steps that they may miss. There are a lot of surveys now that say health care works often miss simple opportunities to wash their hands — as many as 50% of opportunities. Not because they're evil or because they intend to infect people, but because they're distracted and have very, very busy days. And there are bacteria — and staph is one of them — that can live on surfaces in hospitals. Unless things were absolutely sterile all the time, it is unlikely that we would be able to make hospitals completely resistant-bacteria free."

What makes MRSA the perfect pathogen:

"It's very difficult to act as thought it doesn't have a personality. It seems so smart. Not it's not in fact smart — it's in fact the blind persistence of natural selection. But natural selection seems to be working really well for staph. First, it has all this ability to live with us in a manner that is pretty much unchallengeable. We can't eradicate staph. It's part of our personal flora and part of our environment. Then, it has this really sophisticated system of defenses and work-arounds for our immune system. It's got abilities to turn on resistance factors. It's got a wide variety of genes that are specific to that. It also produces toxins that destroy muscle and burst cells. And in addition to all that virulence and all that ability to live on our body and in our environment, it's very smart in developing resistance as well."

Excerpt: 'Superbug: The Fatal Menace of MRSA'

Superbug: The Fatal Menace of MRSA: Cover Detail

Chapter 1

The First Alert

Tony Love's knee ached.

Superbug: The Fatal Menace of MRSA
By Maryn McKenna
Hardcover, 288 pages
Free Press
List price: $26.00

The rangy, round-headed thirteen-year-old had banged into a friend a week ago while they were playing volleyball in the school gym. They crashed to the floor together, arms and untied shoelaces flying, and Tony scraped his elbow. After school, he and his mother and his grandmother had bandaged the cut and shrugged it off. He was a teenager, after all; Clarissa Love, his mother, expected her son to be rambunctious. It was mid-September 2007. The weather was still hot south of Chicago and Tony was still in summer mode, twitching behind his desk at school until the bell rang and he could burst out and work it off. The scratch was no big deal, and Tony was tough; he was the second child of six, and the only boy until his baby brother, the youngest, had come along. Tony saw himself as the man of the family, keeping his sisters in line while Clarissa, who was thirty, worked as an aide for the disabled.

The elbow had healed up after a few days, but then his left knee started to hurt. Now it was hot and so swollen he couldn't bend his leg. When he tried to put his weight on it, it throbbed like his heart had gone down behind his kneecap. Clarissa had gone away for a few days, so her mother Sandra put the oldest sister in charge of the other children, hooked Tony's arm around her shoulder, and steered him out to the car. He leaned on her heavily, hopping on his good leg and wincing when the other foot hit the ground.

At the little local hospital, the emergency room doctor listened to Tony's story and shrugged. It was probably a sprain, he said; take the boy home, give him Motrin, wrap the knee in hot towels, and it would be bet­ter in a few days. They staggered home.

It did not get better. Four days later, Tony's left knee still hurt, and his left foot and both of his hands did too. His hip joints ached so much he didn't want to walk, not even to the bathroom. He didn't want to eat, either. A thirteen-year-old boy with no appetite; to his grandmother, that was the biggest warning sign of all. She checked his temperature and found it was 104. Frightened, she hauled him out to the car and took him to the next-biggest local hospital, a few miles further south. The ER staff there checked his vital signs and listened to his story: the scrape, the fever, the lethargy, the joint pain for more than a week, the not wanting to eat or pee.

They were a little worried, they told his grandmother. Tony's pulse and blood pressure looked normal and his breathing was fine, but the fever indicated an infection, and his kidneys weren't working as well as they should. The hospital was willing to admit him, but to be safe, the ER staff thought they ought to take him to a children's hospital. There was a very good one, they said, back toward the city, at the University of Chicago, and they called an ambulance.

It was the end of the workday, and Clarissa met Tony and her mother at Comer Children's Hospital, a gleaming new glass pile just off the univer­sity's park-like main boulevard. The ambulance crew that brought them rolled Tony straight up to the medical floor, and the nursing staff began admitting him, checking his vital signs again and going over his paperwork from the smaller hospital. The ER staff there had suspected that Tony had osteomyelitis, a bone infection that could be caused by several kinds of bacteria. It was a serious condition, but not rare, and it was treatable, requiring that he get the right drugs for whichever bacteria were infecting him and be monitored by someone who understood the disease in children.

But while they were talking, Tony's condition abruptly got worse. He became agitated and confused; then he began breathing fast and deep. His skin had been radiating heat from the fever, but it turned cold as quickly as if someone had parked him in front of an air conditioner. The medical staff around him recognized the signs: the bacterial infection was spilling over into his bloodstream, and his immune system's spiraling reaction was slowing his pulse and crashing his blood pressure. In half an hour, he had gone from a sick kid to a kid in crisis.

A nurse phoned urgently upstairs to the pediatric intensive care unit, checking for an open bed that had all the monitoring equipment they would need. The technicians kicked the gurney's brake locks and got him rolling, skidding past the curvy computer stations and the kid-friendly bright red columns. Tony was sliding into septic shock, and that was an emergency. Inside his body, chemicals released by his immune system were triggering a cascade like dominos falling. They were stretching the firm walls of his blood vessels, making them porous, and fluid was leak­ing out into his tissues. Blood cells were clumping and clogging his capillaries, and his oxygen-starved organs were beginning to fail. Clarissa felt her stomach cramp in fear. In front of her eyes, her son was dying.

In the ICU, the staff sedated Tony and slid a tube down his throat, turning the hard work of breathing over to a ventilator. They threaded IVs into his veins and hooked him to bags of fluids, plugging in four drugs to bring back his blood pressure and stimulate and stabilize his heart rate, and four more drugs to contain whatever bacteria were rev­ving his immune system into overdrive.

To his bewildered mother and grandmother, the swirl of controlled chaos around Tony was as inexplicable as his sudden collapse; the ICU staff seemed to be trying everything, hoping it would bring him back from the brink. No diagnosis was possible yet. They had been in the hospital barely an hour, not long enough for test results to make it down to the lab and back. But the medical staff had a strong suspicion of what could bring a healthy boy down so quickly, and the clue lay in one of the drugs they ordered pushed into his veins. It was called vancomycin, and it was famous in hospitals as a drug of last resort. They used it against a bacterium that had learned to protect itself against most of the other drugs thrown at it, a particularly dangerous variety of staph called methicillin-resistant Staphylococcus aureus — MRSA, for short.

Staph, the short form of the family name Staphylococcus, is an ancient organism with a vast arsenal of tricks and defenses, some of them newly learned, others as old as man. It is unpredictable, dynamic, potentially deadly — and for more than a decade, it had been the obsession of a small group of University of Chicago researchers. Geographic accident had brought Tony to a place that understood how to help him, but it was far too soon to know whether he had arrived in time.

Excerpted from Superbug: the fatal menace of MRSA by Maryn McKenna. Copyright 2010 Maryn McKenna. Excerpted with permission by Free Press, a Division of Simon & Schuster, Inc.

Buy Featured Book

Superbug: The Fatal Menace of MRSA
Maryn McKenna

Your purchase helps support NPR programming. How?