Building 'The Big Roads' In his new book The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Superhighways writer Earl Swift looks at the history and people behind the world's largest public works project-- the U.S. interstate superhighway system.
NPR logo

Building 'The Big Roads'

  • Download
  • <iframe src="" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript
Building 'The Big Roads'

Building 'The Big Roads'

Building 'The Big Roads'

  • Download
  • <iframe src="" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript

In his new book The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Superhighways writer Earl Swift looks at the history and people behind the world's largest public works project— the U.S. interstate superhighway system.

IRA FLATOW, host: Up next, fasten your seatbelts. It's going to be a bumpy ride. Well, actually, it's going to be a pretty smooth ride, thanks to concrete, asphalt, macadam and tarmac. Those are the materials that transformed the muddy trails and paths that once crisscrossed the U.S., transformed them into our massive system of superhighways, a system that in many ways now defines what the U.S. is.

Where would California be without the 405 - they say the out there - or Washington with no Beltway? And New Jersey, you know, what's your exit? The American highways are such a part of our life for the most - that probably most of us never stop and think about how the world's largest public works project came to be, and it is the world's largest public works project.

It's really a fascinating story. It's filled with mythology like this: You probably heard that it was President Eisenhower, right, who was responsible for the system. It's named after him. Well, he knew virtually nothing about it until he stumbled upon it by accident while in a traffic jam. It's a really fascinating story, and it's told in a new book "The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Highways." Earl Swift is the author, and he is here. He joins us from WHRO in Norfolk, Virginia. Welcome to SCIENCE FRIDAY.

EARL SWIFT: Ira, thanks for having me.

FLATOW: You know, that is a big myth, is it not? We all say it was Eisenhower who created the superhighways.

SWIFT: Oh, it's been - I mean, the fact that it is named after him certainly leaves one with that impression, and I know I grew up believing that it was as much a part of his era as the polio vaccine and, you know, Telstar.

FLATOW: Right. Well, I'm going to quote from a page in your book where you put that all to rest, and you say the Federal Highway Act of 1921 signed into law in November was the foundation for modern highway building in the U.S. It remains the single most important piece of legislation in the creation of a national network, far more so than the later Interstate Highway Bill, which would not have - been possible or necessary without it. Wow.

SWIFT: That's true, yeah. 1921 is really when we got modern - the modern partnership between the federal government and the states that enabled the country to build the network of highways we have today.

FLATOW: You mean the states were building their own roads, and the government was not involved on the state level?

SWIFT: The government was involved, but it was not - there was no coordination built into the planning between states. So you had states and federal government sharing the expense of building highways, but you had no overall plan for how these things would link up into a network that made sense. There was no rational, you know, vision for the thing. The 1921 act changed that.

FLATOW: And you talked about some of the visionaries, about - that when Eisenhower got into office, there was a plan that had been well thought out and the whole highway system put on paper already, and he didn't even know about it.

SWIFT: This had already been authorized by Congress. We had an interstate highway system already approved, already on, you know, on the books. The only thing it lacked was money, and, in fact, it had already received a couple of years worth of funding, although at a token amount at that point.

So it was a done deal in every important respect: in planning, conception, in routing. Where these highways would go had already been decided, what they'd look like, you know, how fast you'd be able to go on them and where you'd be able to go on them.

FLATOW: And you told a really interesting anecdote about how Eisenhower stumbled on the plan in a traffic - stuck in a traffic jam one day.

SWIFT: Well, that's one version of the story. He - of course, when he got stuck in that traffic jam, that would have been in 1957 or '58. He was well aware of the system by that time. He had signed the act and had financed it. What he wasn't aware of when he ran into that traffic jam in suburban D.C. was that the interstate highway system that he conceived of, that he thought he was signing into law, was very different from the interstate highway system that had actually been planned back in the '30s and '40s and authorized by Congress and is the system that we're familiar with today.

He had no idea that that system would venture into the cities. In fact, he was very much against that.

FLATOW: All right, we'll talk more about it, the wake-up call that Eisenhower got about what the system actually does and where it went. We're talking with Earl Swift, author of "The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Highways."

Our number: 1-800-989-8255. You can tweet us @scifri if you'd like to answer or ask questions. So please stay with us. We'll be right back after this break. I'm Ira Flatow. This is SCIENCE FRIDAY, from NPR.


FLATOW: You're listening to SCIENCE FRIDAY. I'm Ira Flatow. We're talking about the creation of the superhighway system in the United States. Our number: 1-800-989-8255. We're talking with Earl Swift, author of "The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Superhighways."

And this book is so chock full of little anecdotes and stories and stuff, it's hard to know where to begin. Let me begin or continue by asking you who would be considered, then, the great father of our superhighway system? Who would you credit? I know you talk a lot about Thomas MacDonald as being that...

SWIFT: Thomas McDonald would probably get my vote as the first among equals of the triumvirate of men I think I'd most credit. It was an evolution. You know, the interstates evolved from the numbered U.S. highway system that dates to the mid-'20s. Those evolved from a very primitive network of mostly dirt auto trails that we had throughout the teens and early '20s.

And so, really, to credit just one guy is a bit misleading. It really started for my - for the purpose of coming up with a line that makes sense with a guy named Carl Fisher, I think. He was an Indiana wild man and speed demon, a bicycle racer, auto dealer.

He marketed the first practical automotive headlight, which made him a millionaire, and he built the Indianapolis Motor Speedway with his winnings and then singlehandedly pretty much built the city of Miami Beach and along the way convinced a bunch of his automotive buddies to finance a rock highway from New York to San Francisco, the Lincoln Highway, which they did in fact built.

And that effort inspired businessmen in other cities to get behind private-sector road building, as well, and that's how we got this primitive network of auto trails that sprung up in the late teens.

MacDonald came in as the head of the federal road building effort in 1919, a job he kept for 34 years. He was - he finally retired in 1953. And he turned that primitive network that Fisher and company had conceived into a rational numbered network, a real grid that made some sense, and then conducted, oversaw the research in the '20s and '30s that spawned the interstate system and rode herd on the proposal that became the rough blueprint for the interstate system.

And then his protege, a guy named Frank Turner, turned that vision into the concrete and steel that started to sprout around the country in the '60s and '70s. Those three.

FLATOW: Yeah, and then they had to come up with a numbering system. It's fascinating how you describe how they decided how to number the highways.

SWIFT: Well, they did because back in the days of the auto trails, the long-distance roads in America all had names like the Lee Highway, the Lincoln, the Arrowhead Trail. And they identified themselves, if you were a driver, you knew when you were on a - on the road you were on because it had a signature color scheme, and they painted that color scheme in rings on telephone poles.

And, you know, they literally blazed the trail that you followed. But after a while, it became so unwieldy because you had multiple trails overlapping, you had 250 trails around the country, 64 in Iowa alone, and you couldn't keep track of where you were. I mean, the telephone poles were painted from ground to 15 feet up, and trying to figure out one color scheme from the next became a dangerous distraction.

So the feds and the states stepped in and decided to take the private auto trails, the associations that promoted these trails, out of the road-building business, and they came up - they assigned a committee to come up with a numbering scheme, and a guy name E.W. James probably deserves the most credit for coming up with the scheme they devised in 1926, which was that all north-south highways would be numbered with odd numbers, all east-west highways would have even numbers.

And the lowest numbers of each would be in the far northeast corner of the country up in Maine. So numbers would increase as you went west and south, and it had the advantage not only of being expandable, you know, you could always add more numbers to the system as you built new highways. But it also allowed a motorist to figure out where he was based on an intersection between, you know, two of these highways. He could roughly kind of pinpoint - you could triangulate your position in the Lower 48.

The interstate system took that same idea and just used a mirror image of it, again odd numbers are north-south, even numbers east-west, but the lowest numbers are down in San Diego, and they increase in number as you go east and north.

FLATOW: And then you had the triple digits, which showed that there was like a spur. Like you had 95, 195 led into that, or...

SWIFT: The odd-numbered - on a three-digit number, the first number, if it's an odd number, denotes a spur. It means that it connects with the main highway only in one point. An even number means that it's a loop and that it connects in two places.

FLATOW: And that gave rise to the beltway.


SWIFT: Yes, it did.

FLATOW: 1-800-989-8255 is our number. You talk about an interesting character, Louis - architect Lewis Mumford, who was very influential in those days, who started out as a great proponent, defender of the highway system until he saw the havoc it was wrecking into - as people wanted to move it into downtown urban areas, and then he turned around, changed his mind.

SWIFT: Mumford is a very interesting guy because he did a complete 180. In the summer of 1931, he co-authored a piece in Harper's with a friend of his named Benton MacKaye, in which they advocated what we would now consider a limited-access, high-speed expressway. There were none of them in the country at the time, so this was pretty theoretical stuff that they were advocating.

But they described in this piece, you know, the modern interstate experience, pretty much, with grade separated intersections, with development and access to the highway only at certain points. And, you know, he - this - the interesting thing here is that MacKaye, his co-author in this, was also the guy who proposed the Appalachian Trail a few years ago, or a few years before that.

Over the course of the next 25 years, after this story appears - and they were - there were a number of thinkers who were, you know, kind of dovetailing on this idea of limited access at the time. But over the next 25 years, Mumford completely shifted his thinking on highways.

And as you say, it was especially when he saw the collateral damage caused by trying to ramrod a, you know, 200-, 300-foot road right-of-way through a densely settled older city, especially in the east...

FLATOW: And in the poorest neighborhoods, to try to get - and people...

SWIFT: Most often, but, you know, in the case of some road projects weren't real picky about what kind of neighborhood they blasted through, and that caused Mumford a great deal of heartache, as did his realization, over time, that building more roads didn't alleviate traffic congestion, it just created more congestion on newer roads.

And he came to recognize, earlier than most people I think, that highways are almost like mountains: They create their own weather. They fill up as quickly as you build them, and it really doesn't seem to matter how quickly or how big you build them, they still fill up.

FLATOW: 1-800-989-8255 is our number. Let's see if I can get a phone call in here from Nicholas(ph) in Bethesda. Hi, Nicholas.

NICHOLAS: Hi, how are you?

FLATOW: Hi there.

NICHOLAS: I had a question - actually, you were just addressing that - about the cultural impact of building highways. I used to live in Detroit, and one of the neighborhoods that was, sort of, decimated by I-75 was known as Black Bottom, and I wanted to know if there were, sort of, other neighborhoods that had caused such cultural impact, where the highway had caused such cultural impact and changed sort of the landscape of ethnic neighborhoods in the community.

And also, Detroit doesn't have much of a public transportation system. Can we blame on the highways, the development of the highway system? Thank you.

FLATOW: Thank you, Nicholas.

SWIFT: Well, on the first point, just about every city in the United States in which these highways appeared suffered some collateral damage from the experience, and that was mostly - that was more true in older cities. You know, there are some like Atlanta and Houston that were actually kind of shaped by the interstates rather than disrupted by them.

But just about every city of the east and most of the older cities of the west, as well - Seattle, San Francisco, Boston, New York, Philadelphia, Wilmington, Nashville, Memphis - they were all grievously disrupted by the process of building roads, just as they would have to be. People had been living there for a long time in close proximity, and these were big, big roads.

FLATOW: You single out one person, Joe Wiles in Baltimore.

SWIFT: Baltimore was the city, I suppose...

FLATOW: It was fighting back. Yeah.

SWIFT: ...that's kind of the test case. Yeah. And Joe Wiles is one of tens of thousands of people, who, you know, just regular homeowners and residents who decided, you know, they weren't going to stand idly by and allow homes and neighborhoods they had spent years building to be bulldozed. And there were a number of protest movements that sprung up in cities around the country that were successful.

In San Francisco, the Embarcadero Freeway was stopped at the halfway point. In Baltimore, freeway construction was stopped at the city limit. Baltimore is one of the few cities that is not pierced by an interstate today. And you saw the same thing happen in Memphis, where Interstate 40 was stopped before it could slice through a beloved park, Overton Park. Now it does an interim completely around the city.

FLATOW: But Robert Moses wanted to run a highway straight down Manhattan, didn't he?

SWIFT: He wanted to go around three of them straight through Manhattan.


FLATOW: So what stopped him?

SWIFT: You know, it's amazing that he was stopped, because he managed to get so much built. But he overstepped even his own supporters on that one, I think. The idea of drilling an interstate through Washington Square was a bit more than people can handle. And also, he would have taken out the entire just recently completed kind of midtown high-rise district that included the Rockefeller Center, if he had gotten his way. And people were pretty happy with those buildings at the time.

FLATOW: Mm-hmm. Tell us about Miller McClintock. He was an engineer, correct?

SWIFT: Yeah. Miller McClintock was another one of the thinkers, who, in the very early '30s, proposed pieces of what we now recognize as kind of the interstate model. And he was a Harvard professor, who reputedly had the first doctorate in traffic. And he was on loan to the city of Chicago, doing a traffic study, and realized that all of the traffic accidents that he saw and most of the congestion he witnessed could be ascribed to four of what he called frictions.

And he came to see traffic as this kind of working like fluid mechanics, where it came to see cars as cork puzzles in a system of veins and arteries. And these four frictions, in almost every case, interrupted the flow or caused clog and one of the most intersectional friction, which is what you run in to if you have traffic crossing in front of you. And he found that it caused about one in five accidents. Another one was medial friction, which is head-on kind of friction, you know, caused by incursions over the center line. And then there was internal stream friction, which is when you have friction between cars traveling in the same direction. So you - sideswipes, rear-enders, that sort of thing, the most common kind of car accident. He found that 44 percent of accidents were caused by that internal stream friction.

Finally, marginal friction which was caused by hitting objects off of the road, which account for an enormous number of accidents, many more than you would expect. And that involved boulders, guard rails, trees and the unlucky pedestrian who happen to be too close to the pavement.

FLATOW: Talking with Earl Swift, the author of "The Big Roads" on SCIENCE FRIDAY, from NPR. I'm Ira Flatow. I - one of the most fascinating aspects of your book is - because it interests me so personally, is concrete and the development of roads in the country, and how we got the word tarmac and concrete and things like that.

SWIFT: Well, you're the first person who said to me, Ira, that that is the part of the book that most interested them, so I'm glad to hear it, because I was fascinated by concrete. (unintelligible)

FLATOW: I love concrete. It never stops curing, I understand, but that's another story.

SWIFT: Yes, true. Yeah. It just clips along. Yeah. You know, the - I find out a lot more than I ever expected to know about concrete in the course of doing the book. And one of the things that really surprised me was that this is an ancient technology that we just kind of lost for hundreds of years. You know, this was something that the Romans were very adept at using, and their concrete constructions stand today. And yet, we, for the entire for the first millennium and right up until, really, the opening of the 20th century, kind of just somehow misplaced that technology completely and didn't get it back in full until 1918.

FLATOW: Right.

SWIFT: He was one guy...

FLATOW: Go ahead.

SWIFT: An American engineer named Duff Abrams in 1918 came up with the very simple recipe for modern concrete. And, basically, what their recipe says is - there have been a lot of competing theory about what constitutes the correct mix for concretes, various components, and there are only three components: there's cement, you know, Portland cement. There's water, and there's aggregate, which is sand or gravel or whatever it is that you mix to, you know, to give it body. And - no one had been able to come up with a way to properly regulate mixing of this, so you get a predictable result. And Abrams was able to do that by just pointing out that after putting together 50,000 some-odd batches of concrete, he was able to say that the only thing that really determines the strength of concrete is that you use as little water as you possibly can...

FLATOW: Just enough.

SWIFT: mixing it. Just enough to make it plastic, so that you can mix it. Anything more, and its strength just drops off the cliff.

FLATOW: And you talk about the early roads being made out of Macadam, which is a rocky stuff?

SWIFT: Macadam is just - it's gravel of various types, various sizes. Usually, you lay down big gravel, and then you lay down little gravel on top of it. You roll it, and voila, you have a macadam road. And it dates from the 1820s, 1830s, and takes its name from a guy, John McAdam, who developed the process. And, really, what American engineers brought to it was adding either tar or asphalt to the macadam to create bituminous macadam. And that's what we now know as blacktop.

FLATOW: Or tarmac, tar and macadam.

SWIFT: Tarmac would be the tar.


SWIFT: And tar is basically just a coal derivative. It's a fake asphalt.

FLATOW: See what you learn from this book. I mean, the rest of my listeners are nodding off, but I'm enjoying all the talk about the concrete.


FLATOW: Thanks for being with us. I promise we'll change subjects after the break. We're talking about roads and highways and concrete, and we'll wake up with Earl Swift, author of "The Big Roads," a terrific book about how the highways were created, and a lot personal stories in there, not just talking about watching concrete dry - "The Untold Story of the Engineers, Visionaries and the Trailblazers Who Created the American Superhighways." We'll be back with Earl after this break, so stay with us. We'll get some of your questions in. This is - 1-800-989-8255. I'm Ira Flatow. Stay with us. We'll be right back.


FLATOW: You're listening to SCIENCE FRIDAY. I'm Ira Flatow. We're talking about highways this hour with Earl Swift, author of "The Big Roads." Our number: 1-800-989-8255. Just a couple of more minutes left. Let's see if we can get a couple of phone calls in here. Susan in Alexandria, Virginia. Hi, Susan.

SUSAN: Hi, Ira.

FLATOW: Hi, there.

SUSAN: I always heard that Eisenhower, being of a military mind, required that there be these long, straight passages on the interstate systems - say, a mile long - that could be used as runways in case of some sort of a national emergency, to be used in a military way. Is that true, or an urban myth?

FLATOW: Good question.

SWIFT: That is, Susan, that's sadly an urban myth, but it's such a good story. It's a shame it is. But, yeah, it's - yeah.


SUSAN: Well, it's kind of a good idea.

SWIFT: Well, it would, but, you know, the fact they are...

FLATOW: Didn't he see in World War II the great autobahns the Germans had when he was over there and say, I want some of that stuff?

SUSAN: Yeah.

SWIFT: Well, he sure did, yeah - unknowing that, of course, we already had something on the books back here. But - in fact, the Air Force would have loved to have seen that, I think. And they approached the Bureau of Public Roads about having a look to see whether it was possible to incorporate an emergency runway system into the interstates. And the Federal Highway folks just found that it could not be done.

FLATOW: In Europe - they have some in Europe, do they not, some of the highways?

SWIFT: Well, that was - of course, you got to understand, the autobahns were designed to be military roads. They were not designed to move people and commerce.

FLATOW: Right.

SWIFT: I mean, they were - you know, when - they were open, nobody in Germany had a car. The only people using them were, you know, trucks full of soldiers and tanks. And that was amply clear to all of the American highway officials who went over to take a look at them. They admired their construction and design. But, to a one, they came away concluding that something like that wouldn't have a lot of utility in the United States because, yeah, it was designed to move the German army to the country's frontier so they could wage war on their neighbors - pretty clearly designed to do that.

FLATOW: Mm-hmm. You start your book by taking a cross-country tour on the Lincoln Highway, and you've seen a lot of highways and byways. Can you give us a - an idea of what the state of America's superhighways is today?

SWIFT: Well, it's a bit troubling, really. Of course, it varies from state to state. These are state highways. The U.S. Interstate Highway System is not owned by the federal government. And so the level of maintenance on the system varies from state to state, according to each state's ability to cut loose the money to maintain them.

And, you know, the system is now at or nearing its expected service life, and will require a great infusion of capital in the coming years to stay useful, to stay in one piece. We put a tremendous load on this thing. This - the 47,000-mile system constitutes 1.2 percent of our highway mileage, and it carries 25 percent of our traffic, so that it's just an incalculable amount of wear that we subject these roads to. And we simply have not done a very good job in quite a few states at making sure that it's up to the - continue to be up to the task.

There are 55,000 bridges on the system. So think about that the next time you drive over an interstate bridge. It may have been a few years since it got a lot of maintenance. What we'll see happen if money isn't forthcoming to fix this, the bridges will be downgraded on what they can carry, and they'll become far less useful. And, eventually, you'll see stretches of the highway subjected to the same constraints.

FLATOW: They'll close them?

SWIFT: They will limit the amount of weight they can carry.

FLATOW: So trucks, heavy trucks won't be able to go on them.

SWIFT: Which is an awfully big piece of the reason that they're useful.

FLATOW: When it's why the interstate highway was built in the first place.

SWIFT: It's a huge piece of the argument for them. You bet.

FLATOW: To go from big city to big city. I suppose Eisenhower thought they should be going to little towns. That's why he was so surprised, you know?

SWIFT: Yeah, he wanted - he envisioned kind of an autobahn system that avoided the cities. You might be able to get into a city off of the interstate system on a spur, but the system itself would avoid the cities. And he was very surprised when he found that that wasn't the case. The concrete was already being poured when he found that wasn't the case.

FLATOW: Well, there are a lot of great, big surprises in your book, Earl. "The Big Roads: The Untold Story of the Engineers, Visionaries and Trailblazers Who Created the American Superhighways," with Earl Swift. We only had a fraction of the time we need to cover this book. And I - it's a great book, and it's got all my geeky stuff in it, too, Earl, so...


SWIFT: Well, thank you.

FLATOW: Thanks for the details. The beauty is in the details. Thanks for the - and have a good weekend.

SWIFT: Oh, thanks so much for having me.

FLATOW: And one more time: Earl Swift, author of the "The Big Roads: The Untold Story of the Engineers, Visionaries and...


SWIFT: Well, thank you.

FLATOW: Thanks for the details. The beauty is in the details. Thanks for the - and have a good weekend.

SWIFT: Oh, thanks so much for having me.

FLATOW: One more time, Earl Swift, author of "The Big Roads: The Untold Story of the Engineers, Visionaries, and Trailblazers Who Created the American Superhighways."

Copyright © 2011 NPR. All rights reserved. Visit our website terms of use and permissions pages at for further information.

NPR transcripts are created on a rush deadline by Verb8tm, Inc., an NPR contractor, and produced using a proprietary transcription process developed with NPR. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.