How does it feel to launch into space on a rocket? We kickoff our series Space Camp with a look at space launches. What does hurtling into space feel like? What physics are involved? And what's the "junk" in Earth's orbit?

From the physics of g-force to weightlessness: How it feels to launch into space

From the physics of g-force to weightlessness: How it feels to launch into space

  • Download
  • <iframe src="https://www.npr.org/player/embed/1254017664/g-s1-3962" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">

Astronaut Wendy B. Lawrence was aboard the the Space Shuttle Endeavour for the STS-67/ASTRO-2 mission when it launched March 2nd, 1995. NASA hide caption

toggle caption
NASA
Astronaut Wendy B. Lawrence was aboard the the Space Shuttle Endeavour for the STS-67/ASTRO-2 mission when it launched March 2nd, 1995.

Astronaut Wendy B. Lawrence was aboard the the Space Shuttle Endeavour for the STS-67/ASTRO-2 mission when it launched March 2nd, 1995.

NASA

This story is part of Short Wave's series Space Camp about all the weird, wonderful things happening in the universe. Check out the rest of the series.


What does it take to launch into space?

Other than money, hard work and many moving parts, the answer is science! This summer, NPR science podcast Short Wave is launching Space Camp, a series about all the weird and wonderful things in our universe. We start with how to get to outer space in the first place.

Rockets and Isaac Newton

It mostly goes without saying, but for a person to get to outer space, they need to be in some sort of spacecraft attached to a rocket.

That rocket shoots out exhaust when it leaves the launch pad. That exhaust is shooting towards the launchpad. This is where Isaac Newton's third law of motion comes into action. This law says that "for every action there is an equal and opposite reaction." So, as the exhaust pushes downward, it creates an upward force, letting the rocket shoot skyward.

Here, Walter Lewin, formerly a professor of MIT, completes a common demonstration of Newton's third law of motion, as part of his farewell lecture.

Newton's third law - Best Demonstration EVER !! - by Prof. Walter Lewin YouTube

A good example on a smaller scale is a common physics demonstration where someone holds a fire extinguisher while sitting on something with wheels. Like in this video, as the extinguisher fires, the person goes the opposite direction.

The exhaust from a rocket launching into space does the same thing.

The rocket has to go really fast because it needs to overcome the curvature of spacetime itself. The fabric of our universe, called spacetime, can be thought of as a bendable sheet. The mass of Earth makes the flat fabric of spacetime curve inward in a funnel-like shape. Moving up the funnel — thereby escaping Earth's gravity — is more difficult than moving down.

This illustration explains gravitational force, also known as "g-force." It is one of the four fundamental forces in the universe, and is seen bending spacetime amid the mass of Earth. NASA hide caption

toggle caption
NASA
This illustration explains gravitational force, also known as "g-force." It is one of the four fundamental forces in the universe, and is seen bending spacetime amid the mass of Earth.

This illustration explains gravitational force, also known as "g-force." It is one of the four fundamental forces in the universe, and is seen bending spacetime amid the mass of Earth.

NASA

G-forces and why floating is falling

When those rockets blast off, astronauts experience intense g-forces.

G-forces come from when your body experiences acceleration. When you're just sitting or walking around on Earth, you're probably not noticing them — even though there's always the regular pull of Earth's gravity, which is 1 G.

You're more likely to notice them when you're doing something like going up in an elevator pretty fast. Then, you feel heavier.

But the heaviness of being in a fast elevator is nothing compared to what astronauts experience during a launch. Retired Navy Captain and former NASA astronaut Wendy Lawrence recalled the feeling of intense g-forces to NPR in a recent interview.

"I remember on my first flight thinking, 'Oh, my gosh, somebody just sat down on my chest,'" she says. "I tried to see if I could put my arm out in front of me ... and like, 'Wow, I cannot hold it out there against this tremendous power and acceleration being produced by this amazing space vehicle.'"

Astronaut Wendy B. Lawrence, flight engineer and mission specialist for STS-67, scribbles notes on the margin of a checklist while monitoring an experiment on the Space Shuttle Endeavour's mid-deck. MSFC/NASA hide caption

toggle caption
MSFC/NASA
Astronaut Wendy B. Lawrence, flight engineer and mission specialist for STS-67, scribbles notes on the margin of a checklist while monitoring an experiment on the Space Shuttle Endeavour's mid-deck.

Astronaut Wendy B. Lawrence, flight engineer and mission specialist for STS-67, scribbles notes on the margin of a checklist while monitoring an experiment on the Space Shuttle Endeavour's mid-deck.

MSFC/NASA

Pretty quickly, that experience changes. Once rockets detach from the spaceship, that force pushing the astronauts into their seats is gone. They start to float under their seatbelts.

They feel what is commonly called weightlessness.

But gravity isn't gone. Even on the International Space Station, astronauts experience microgravity.

You can get a small taste of this feeling on Earth. There are amusement park rides that shoot up — causing riders to feel heavy — and then drop riders. During that drop, the riders feel weightless even though they're actually falling. In physics this is called freefall. All the astronauts in the International Space Station are technically falling very slowly, which is why they feel weightless.

Captain Lawrence says it's an amazing experience. "You just relax," she recalls. "You're suspended right there in the middle of the air, and you want park yourself in front of a window and float in front of it and watch the world go by."

To orbit is to fall and miss Earth

It turns out that orbiting, as astronauts aboard the International Space Station do, is falling. Specifically, it's towards Earth.

Newton had a series of thought experiments to explain this idea.

Scenario 1: Imagine you're standing on flat ground. Now imagine that you shoot a cannonball horizontally from your spot on the ground. In this scenario, the cannon ball will travel horizontally for a while before it starts to fall along a curved path. This is projectile motion.

Scenario 2: You shoot this same cannonball horizontally — from the top of a very tall mountain. In this case, the ball would hit the ground even farther away because it had farther to fall and would have been in the air longer. If you shoot the cannonball out at a higher velocity, it would travel even farther. That curved path is getting more and more stretched.

Scenario 3: With a high enough launch speed you can get the cannonball to fall at a curved path that matches the curvature of Earth. Since the curvatures match, the cannon ball keeps missing Earth. This is what it means to have something in orbit. The cannonball falls but never reaches the ground.


Next up: Short Wave Space Camp: Pluto

Now if we get out of Earth's orbit and to the end of our solar system, we will pass the beloved once-planet Pluto. Why are there only eight planets in our solar system? What does it mean that Pluto was downgraded to a dwarf planet all those years ago? We also explain why Pluto's geology surprised scientists.


More from Short Wave

Have other space stories you want us to cover? Email us at shortwave@npr.org.

Listen to Short Wave on Spotify, Apple Podcasts and Google Podcasts.

Listen to every episode of Short Wave sponsor-free and support our work at NPR by signing up for Short Wave+ at plus.npr.org/shortwave.

This episode was produced by Berly McCoy, edited by Rebecca Ramirez and fact checked by Regina Barber, Emily Kwong and Rebecca. Gilly Moon was the audio engineer.