Scientific Tinkering Leads To New Cell Insight Scientists in England have found a way to trick bacterial cells into making compounds that aren't found in nature. Those compounds are proteins, and proteins are the basic building blocks of everything a living organism needs to survive.
NPR logo

Scientific Tinkering Leads To New Cell Insight

  • Download
  • <iframe src="https://www.npr.org/player/embed/123732987/123732971" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript
Scientific Tinkering Leads To New Cell Insight

Scientific Tinkering Leads To New Cell Insight

Scientific Tinkering Leads To New Cell Insight

  • Download
  • <iframe src="https://www.npr.org/player/embed/123732987/123732971" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript

Scientists in England have found a way to trick bacterial cells into making compounds that aren't found in nature. Those compounds are proteins, and proteins are the basic building blocks of everything a living organism needs to survive.

LINDA WERTHEIMER, Host:

Scientists in England have found a way to trick bacterial cells into making compounds that are not found in nature. These compounds are new kinds of proteins, and proteins, of course, are the building blocks a living organism needs to survive. NPR's Joe Palca has more.

JOE PALCA: Before we go on, here's the world's shortest lesson in molecular biology. Proteins are made of amino acids. The instructions for which amino acids to use to make a particular protein are contained in DNA. DNA is made up of long strings of what you can think of as the letters A, T, C and G. So to make a protein, you need something that can read the instructions in the DNA letters.

JIM COLLINS: And what you have are molecular machines within the cell that can read the letters in groups of three.

PALCA: But for protein tinkerers, this system is limited. The three-letter code only allows you to specify 20 amino acids or so. If you had a ribosome that could read letters in groups of four, you could have over 200 amino acids to choose from in making your protein.

COLLINS: The challenge there is that the molecular machines that read out these codes are naturally designed - at least here on earth - to read only the triplets.

PALCA: But Collins says Jason Chin may have found a way around that limitation. Chin is at the Medical Research Council Laboratory of Molecular Biology in Cambridge, England.

COLLINS: And what Jason Chin's group just did was to reengineer ribosomes so that they would read quadruplets.

PALCA: Chin says it should be possible to use his new system to insert new amino acids that will make proteins heartier.

JASON CHIN: So for certain therapeutic proteins, you want to be able to do this to increase their efficacy, to increase the amount of time they're available in the body without getting degraded.

PALCA: In recent years, biologists have gotten pretty good at designing new proteins. Bioengineer Farren Isaacs of Harvard Medical School says Jason Chin has given them a new way to actually make the proteins they've designed.

FARREN ISAACS: I imagine that you're just going to see a lot of collaboration between people like Jason and protein design engineers to really enhance the power of this technology.

PALCA: Joe Palca, NPR News, Washington.

Copyright © 2010 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by Verb8tm, Inc., an NPR contractor, and produced using a proprietary transcription process developed with NPR. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.