Progress In The Fight Against A Parasite That Causes Diarrheal Disease : Goats and Soda Scientists have had a hard time finding the weak spots of Cryptosporidium parvum, but now that's changing. It's not a common killer in the U.S., but it's a different story in the developing world.
NPR logo

Progress In The Fight Against A Parasite That Causes Diarrheal Disease

  • Download
  • <iframe src="https://www.npr.org/player/embed/422945908/423263394" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript
Progress In The Fight Against A Parasite That Causes Diarrheal Disease

Progress In The Fight Against A Parasite That Causes Diarrheal Disease

  • Download
  • <iframe src="https://www.npr.org/player/embed/422945908/423263394" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript

AUDIE CORNISH, HOST:

Scientists are announcing progress in fighting a dangerous parasite. Cryptosporidium parvum infects gut and causes severe diarrhea. In parts of the developing world, it's the second-leading cause of diarrheal disease, and you can get it by drinking contaminated water. Researchers have been working on better cures and a vaccine for the parasite. But the organism is difficult to study, and they haven't had much success. As part of his series "Joe's Big Idea," NPR's Joe Palca introduces us to a scientist whose work is promising to change all that.

JOE PALCA, BYLINE: For the most part, no one in this country dies from cryptosporidium infection, but outbreaks do occur. In 1993, 400,000 people in Milwaukee were sickened when the parasite got into the city water system.

BORIS STRIEPEN: And it's very unpleasant for a week or two, but then it's over.

PALCA: That's That's Boris Striepen. He's a distinguished research professor at the University of Georgia in Athens. Striepen says it's a different story in the developing world.

STRIEPEN: Small children, especially small malnourished children, are very susceptible, and they can indeed suffer chronic disease and die from the disease as well.

PALCA: A study of children in sub-Saharan Africa and South Asia found cryptosporidium was the second leading cause of diarrheal disease.

STRIEPEN: So why is it so difficult to study? Well, so the biggest challenge is that we cannot grow it, really, in the laboratory.

PALCA: Scientists like to be able to grow organisms in the lab because they're far easier to study and manipulate. And there's another thing that makes studying cryptosporidium difficult.

STRIEPEN: There's no technology to study the genetics of the organism.

PALCA: And because there's no way to grow cryptosporidium in the lab, there's no good way to create that technology. And you want to study the genetics of an organism since that can reveal its weaknesses. Despite the hurdles, Striepen decided he had to try to develop these tools.

STRIEPEN: We're trying this for 10 years, but we failed every time, quite miserably.

PALCA: But then, along came something called CRISPR. It's a system that can target DNA and either add or remove genetic sequences. It was originally found in bacteria, but it's been modified to work in a variety of species, now including the cryptosporidium parasite. Striepen says they still can't grow the parasite in the lab, but they can infect animals. So he says what they do is infect the animals, isolate the parasite from the animal's stool, use CRISPR to modify the parasite and then infect other animals.

STRIEPEN: That way, you know, using laboratory animals, we can propagate the infection, and therefore, we can also propagate these organisms that we have changed.

PALCA: And also use the infected animals to test drug or vaccine candidates. When he started out working on cryptosporidium, Striepen says he knew developing this genetic toolkit was a high-risk project. But it was also high-reward, and everyone seems to agree these days that it's crucial for researchers to take on risky projects if they're to make important advances.

STRIEPEN: But while you are doing that, it's a quite uncomfortable position to be in - right? - because, you know, I woke up some nights, and I thought, well, these poor kids who work with me in the lab. I bring them out onto this Hail Mary project, and I risk their careers. So there's really - it's really very gratifying to see that it worked and, you know, that we could make some real progress and make a real contribution.

PALCA: The new work appears in the journal Nature. Joe Palca, NPR News.

Copyright © 2015 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by Verb8tm, Inc., an NPR contractor, and produced using a proprietary transcription process developed with NPR. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.