Wanna Play? Computer Gamers Help Push Frontier Of Brain Research Computer games aren't just for fun anymore — they're also valuable research tools. Scientists are taking complex problems — like trying to figure out how proteins fold and how neural networks work — and turning them into engaging games. And they need your help.

Wanna Play? Computer Gamers Help Push Frontier Of Brain Research

  • Download
  • <iframe src="https://www.npr.org/player/embed/173435599/173495431" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript


Here's something else for you to get your head around. By some estimates, the people on this planet spend 3 billion hours a week playing video games. That's billion - with a B.

Some scientists are hoping to make use of all that human capital. NPR's Joe Palca reports on what they're doing, in his series "Joe's Big Idea."

JOE PALCA, BYLINE: People can get pretty addicted to computer games, so why not do it for a good cause?


PALCA: Right now, I'm at the novice level of a game called EyeWire. Each one of those annoying bloops you can hear in the background is me trying to color in a nerve cell, in a cartoon drawing of a slice of tissue.


PALCA: EyeWire is designed to solve a real science problem. It aims to chart the billions of nerve connections in the brain.

SEBASTIAN SEUNG: There's no way the professional scientists alone can analyze all of that. We need people to help us.

PALCA: Sebastian Seung is a neuroscientist at the Massachusetts Institute of Technology. He thinks understanding all those connections is key to understanding how the brain works.

SEUNG: And I like to use the metaphor of the brain as a huge jungle of these entangled branches of neurons, and we need an army of people to go out and explore that jungle. What could be more exciting than exploring the brain? Much more exciting than any artificial video game.

PALCA: At least, Seung is hoping that's what people will think. But before he tackles the human brain, Seung wants to explore a simpler collection of nerves, the ones in the back of the eyes of mice. So he and his colleagues created EyeWire - E-Y-E wire - that looks at the neural connections in the eye. So far, about 35,000 people have registered with EyeWire.org to play.

SEUNG: Anyone sitting in their living room can just fire up a web browser and look at images of neurons, and help us figure out how they're connected.

PALCA: The game sounds deceptively simple. Players get a virtual cube of material filled with neurons, to analyze.

SEUNG: It looks like a three-dimensional coloring book. Your job is just to stay between the lines, which are the boundaries of a neuron, and follow the branch of a neuron through that cube.

PALCA: But I can tell you, it's not as easy as it sounds. You get to practice, at the start of the game, on cubes where the neuronal branches have already been worked out. It's only after you master those that you get fresh material.

SEUNG: It actually takes many hours of training to be able to color reliably, between those lines. You have to learn something about neuroanatomy - what the structure of a neuron looks like at the micro scale - in order to do this reliably.

PALCA: Now, you may be thinking what I was thinking when I heard Seung describe his game - wouldn't a computer using artificial intelligence do a better job of coloring between the lines? Well, it turns out the answer is no. Human vision is better than machine vision, for this kind of task.

SEUNG: One thing that humans are doing as they play this game - they're also teaching the artificial intelligence to become smarter.

PALCA: I guess we humans are still good for something. Now, EyeWire is all about how well we see. There's another game, called Foldit, that takes advantage of something humans are also remarkably good at, thinking in 3-D. The game was created at the Center for Game Science, at the University of Washington.

Really, there's a whole center - with a faculty and grad students. Zoran Popovic, who runs the place, says Foldit was designed to help solve a major problem in biology, how proteins fold. That's an important issue. Misfolded proteins can lead to all kinds of diseases, from cystic fibrosis to mad cow disease.

Foldit has been a big success. Popovic says there are half a million people registered to play the game, and that's made other scientists and inventors take the idea of using games for science seriously.

ZORAN POPOVIC: I get a new proposal from people every week or something, about the different potential scientific thing that we could - doing. There's also even more applications in engineering. So for example, one thing that people have a lot of trouble with, is designing really compact silicon chips.

PALCA: Although they're small, these chips have complicated 3-D structures, and Popovic says designing them is a bit of a dark art. Gamers might come up with better approaches.One additional benefit to these games is, they're open to everyone. You don't have to have an advanced degree to play.Adrien Treuille was involved in the origins of Foldit, and is now at the Carnegie Mellon University. He says there may be people out there who had no idea they were any good at mapping neurons or designing silicon chips. And Treuille says superstar gamers might have even more to contribute to science.

ADRIEN TREUILLE: And these games have given us - really, for the first time in history - a way of identifying these people completely outside of the ordinary academic food chain; which is actually, you know, very elitist and very difficult to get into.

PALCA: Computer games may be a more populist way of drawing people into science and invention.

Joe Palca, NPR News.


Copyright © 2013 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by an NPR contractor. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.