Sushi Science: A 3-D View Of The Body's Wasabi Receptor : Shots - Health News The same receptor on nerve endings that makes sinuses tingle when we eat wasabi plays an important role in the pain of inflammation. The first 3-D view of the receptor could lead to better pain drugs.
NPR logo

Sushi Science: A 3-D View Of The Body's Wasabi Receptor

  • Download
  • <iframe src="https://www.npr.org/player/embed/398065961/398342049" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript
Sushi Science: A 3-D View Of The Body's Wasabi Receptor

Sushi Science: A 3-D View Of The Body's Wasabi Receptor

  • Download
  • <iframe src="https://www.npr.org/player/embed/398065961/398342049" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript

AUDIE CORNISH, HOST:

An update now on the science of sushi. Researchers in San Francisco have discovered the exact structure of the molecule that makes your nerves tingle when you eat sushi garnished with wasabi. And NPR's John Hamilton says this finding has a serious side. It could help millions of people who suffer from chronic pain or itching.

JOHN HAMILTON, BYLINE: There are many kinds of pain. We can tell a burn from a slap because heat and pressure activate different tiny receptors on our sensory nerves. And one of those receptors specializes in the type of pain caused by chemical irritants, including that famous green paste. Nearly a decade ago, David Julius at the University of California San Francisco led a team that identified the wasabi receptor.

DAVID JULIUS: Well, it's called a wasabi receptor because it's the molecule that allows us to sort of feel that tingle.

HAMILTON: Julius says it also responds to some other pungent pain-inducing substances, including tear gas.

JULIUS: And what we've learned is that it's activated by a number of environmental irritants, compounds called acrolein, which are produced by burning vegetation or in vehicle exhaust.

HAMILTON: It's even activated by substances produced by our own bodies in response to an injury or arthritis. But Julius wanted to know what the receptor looked like at the level of atoms, something that would tell him a lot about how it worked. One day in the hallway near his lab, he ran into Yifan Cheng, a biochemist who is an expert in something called single particle electron cryo microscopy. Cheng says for a long time, the technology only produced fuzzy images of structures as small as the wasabi receptors.

YIFAN CHENG: But in the last few years, this technique has undergo a revolutionary leap forward.

HAMILTON: So the researchers decided to give it a try, and Julius says it worked.

JULIUS: The big advance here is that, you know, we can actually see the structure of the molecule where we can see the atoms in the molecule.

HAMILTON: That meant they were able to create a precise, three-dimensional model of the receptor. It shows four joined parts, each resembling a cluster of confetti streamers. Julius says the model should help drug makers, who are already developing pain relievers that work by blocking the wasabi receptor.

JULIUS: What the structure does is it gives pharmaceutical firms sort of a map for either tweaking the drugs that they have or for developing drugs that might have different properties.

HAMILTON: Existing pain drugs often have side effects. Julius says wasabi receptors make a good target because they are highly concentrated in the nerve fibers involved in pain sensation.

JULIUS: And that raises the hope that if you target them with drugs, they'll have very selective actions.

HAMILTON: So they could relieve pain from chronic conditions like arthritis without being addictive or causing stomach problems. Diana Bautista at the University of California Berkeley says her lab began studying the wasabi receptor's role in pain several years ago.

DIANA BAUTISTA: And since then, we've discovered that it plays a key role in both acute and chronic itch.

HAMILTON: Bautista says this includes itching so intense that it keeps people from sleeping or forces them to pull their car off the road so they can scratch. She says causes range from allergies, to eczema, to nerve disorders.

BAUTISTA: Chronic itch is very prevalent. It's thought to affect about 10 percent of people worldwide, and there are very few effective treatments for it.

HAMILTON: Bautista says drugs that target the wasabi receptor could change that. And drug companies are beginning to look into the approach. But she says the new understanding of the wasabi receptor isn't just about drug development. It's about understanding how our sensory nerves respond to things we touch or inhale or eat.

BAUTISTA: I definitely have a much better high-resolution image of what's happening at a molecular level when I eat wasabi.

HAMILTON: And feel that familiar tingle. The new research appears in the journal Nature. John Hamilton, NPR News.

Copyright © 2015 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by Verb8tm, Inc., an NPR contractor, and produced using a proprietary transcription process developed with NPR. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.