Bulky Cameras, Meet The Lens-less FlatCam : All Tech Considered How thin can a camera be? Rice University researchers created a "FlatCam" without lenses — one that can even be potentially made into wallpaper. Its roots trace to early pinhole cameras.
NPR logo

Bulky Cameras, Meet The Lens-less FlatCam

  • Download
  • <iframe src="https://www.npr.org/player/embed/466272218/466848869" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript
Bulky Cameras, Meet The Lens-less FlatCam

Bulky Cameras, Meet The Lens-less FlatCam

  • Download
  • <iframe src="https://www.npr.org/player/embed/466272218/466848869" width="100%" height="290" frameborder="0" scrolling="no" title="NPR embedded audio player">
  • Transcript

ARI SHAPIRO, HOST:

And now to a different kind of camera, one that is almost completely flat because it doesn't have a lenses so you can put it in places a traditional camera just wouldn't fit. As part of his series Joe's Big Idea, NPR's Joe Palca has been introducing us to inventors with some clever ideas - today, the people behind FlatCam.

JOE PALCA, BYLINE: It's really kind of amazing how good a picture you can take with just the camera in your smartphone.

RICHARD BARANIUK: If you look at camera technology, it's advanced phenomenally over the last decades, but it's still based around a lens.

PALCA: Richard Baraniuk is a professor of computer and electrical engineering at Rice University. He says lenses make a camera bulky. He and his colleagues wanted to build a slimmed-down camera, and they looked to the past for inspiration.

BARANIUK: Back to really the first cameras - pinhole cameras.

PALCA: Some accounts say pinhole cameras were first described by a Chinese philosopher around 400 B.C. Those cameras later came to be known as the camera obscura. Light enters through a small hole into darkened space sometimes as large as a room, and an image of what the hole was pointed at appears on a screen. With the invention of film and later photo sensors, it became possible to capture that screen image. Baraniuk says this setup actually works quite well.

BARANIUK: The disadvantage of a pinhole camera is that while it provides the simplicity of interpretation of the image, it lets very little light through, so it's very inefficient that way. It's a pinhole, after all.

PALCA: So he and his colleagues decided to build a camera based not around a single pinhole like you might build for a science fair project.

BARANIUK: But one with literally millions of pinholes.

PALCA: These millions of pinholes in Baraniuk's camera are really tiny so you can pack a lot of them together on a thin piece of plastic. Lay the plastic down over a semiconductor chip that's sensitive to light, and voila, you've got a camera that's almost completely flat. But there's a problem. A million pinholes produce a million images all smeared on top of one another - how to separate them? Baraniuk's colleague Ashok Veeraraghavan says the answer is computation. Lots of digital cameras use computation to improve the quality of the image created by the lens in a traditional camera.

ASHOK VEERARAGHAVAN: The entire community of computational imaging has started recognizing that computation cannot only be used to improve images that have been captured by the earlier camera designs but actually change these camera designs in radical fashions.

PALCA: Like a camera made from a million pinholes. Veeraraghavan says it's possible to computationally un-smear images those million images from those million pinholes to make a single, sharp image of what the camera is pointed at. Richard Baraniuk agrees this work will radically change camera design.

BARANIUK: You can imagine making, for example, wallpaper. You could paper over a wall to create a extremely massive camera.

PALCA: Using an entire wall as a camera means you could see absolutely everything in the room, including things that would be out of sight or distorted in a single, smaller camera. Or you could build a cylindrical camera, put something in the middle of the cylinder take pictures of it from every single angle at the same time. Right now the images his FlatCam can produce are about as good as the first conventional digital cameras. But Baraniuk expects they'll get better fast, and he expects people will come up with ways to use the new camera that he can't even imagine. Joe Palca, NPR News.

Copyright © 2016 NPR. All rights reserved. Visit our website terms of use and permissions pages at www.npr.org for further information.

NPR transcripts are created on a rush deadline by Verb8tm, Inc., an NPR contractor, and produced using a proprietary transcription process developed with NPR. This text may not be in its final form and may be updated or revised in the future. Accuracy and availability may vary. The authoritative record of NPR’s programming is the audio record.